If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81g^2-144=0
a = 81; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·81·(-144)
Δ = 46656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{46656}=216$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-216}{2*81}=\frac{-216}{162} =-1+1/3 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+216}{2*81}=\frac{216}{162} =1+1/3 $
| 3y=94.50 | | 2r^2+3=-49 | | 6y=420 | | 3g^2-24=-93 | | -7m+2(-6m-8)=-111 | | 312+x=324 | | 6x2−11x−7=3 | | 2y=420 | | -23c+4=3 | | 9(x-15)=378 | | 3(x-19)=105 | | z^2-57=-57 | | -88=-4(-2+6m) | | 8h^2+0=0 | | -8(-7a+5)=-320 | | 7q^2-63=0 | | g^2-63=-62 | | 20q= | | x+18=2x+4 | | 32v^2-59=13 | | 5u-217=5u/6+8 | | a-26-21=17 | | 500/x=50 | | 7f^2=-7 | | 5x-45=2x/3+7 | | j^2-16=0 | | 8m-13=21 | | 5n/6+8=4n-125 | | -136=-4(8+5b)+7b | | 9f^2+53=89 | | 17+x/5=35 | | 4r-47=2r/3+3 |